| Term | Unit | Ref | Topic | GCSE Objective statement | Hegarty |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.1 * | Place value and rounding scheme C | Order positive and negative integers, decimals ; use the symbols $=, \neq,<,>, \leq, \geq$. <br> Apply the four operations (+, -, ×, $\div$ ); <br> understand and use place value (e.g. when working with very large or very small numbers, and when calculating with decimals). <br> Use standard units of mass, length, time, money, and other measures using decimal quantities where appropriate. <br> Round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal places or significant figures). | $\begin{gathered} 46 \\ 56,130, \\ 131,132 \end{gathered}$ |
|  | 1 Calculations 1 * <br> (Number) | 1.2 * | Adding and subtracting scheme C | Apply the operations (+, - ), including formal written methods, to integers, decimals - all both positive and negative; understand and use place value (e.g. when calculating with decimals). Use standard units of money using decimal quantities where appropriate | 47 |
|  |  | 1.3 * | Multiplying and dividing scheme C | Apply the operations ( $\times, \div$ ), including formal written methods, to integers, decimals and all both positive and negative; understand and use place value (e.g. when calculating with decimals). <br> Recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operations, including brackets, powers, roots and reciprocals. <br> Use standard units of length, time, money, and other measures (including standard compound measures) using decimal quantities where appropriate. | 143, 22 |
|  |  | 2.1* | Simplifying expressions SCHEME C and D | ```Use and interpret algebraic notation, including: - ab in place of \(a \times b\) \(-3 y\) in place of \(y+y+y\) and \(3 \times y\) \(-a^{2}\) in place of \(a \times a, a^{3}\) in place of \(a \times a \times a, a^{2} b\) in place of \(a \times a \times b\) \(-a / b\) in place of \(a \div b\) - coefficients written as fractions rather than as decimals Substitute numerical values into formulae and expressions, including scientific formulae. Understand and use the concepts and vocabulary of expressions, equations, formulae, terms Simplify and manipulate algebraic expressions (including those involving surds and algebraic fractions) by: - collecting like terms - simplifying expressions involving sums, products and powers,``` | 156, 157 |
|  |  | 2.2 * | Indices <br> SCHEME D and E | ```Simplify and manipulate algebraic expressions (including those involving surds and algebraic fractions) by: - collecting like terms - simplifying expressions involving sums, products and powers, including the laws of indices.``` | $\begin{aligned} & \text { 102, 103, } \\ & \text { 104, 105, } \\ & 106,107 \end{aligned}$ |
|  | 2 Expressions <br> (Algebra) | 2.3 | Expanding and factorising 1 <br> SCHEME E | ```Use and interpret algebraic notation, including: - ab in place of \(a \times b\) \(-3 y\) in place of \(y+y+y\) and \(3 \times y\) \(-a^{2}\) in place of \(a \times a, a^{3}\) in place of \(a \times a \times a, a^{2} b\) in place of \(a \times a \times b\) \(-a / b\) in place of \(a \div b\) - coefficients written as fractions rather than as decimals - brackets. Understand and use the concepts and vocabulary of expressions, equations, formulae, identities, inequalities, terms and factors. Simplify and manipulate algebraic expressions ) by: - collecting like terms - multiplying a single term over a bracket - taking out common factors - simplifying expressions involving sums, products and powers, including the laws of indices. - expanding products of two or more binomials - factorising quadratic expressions of the form \(x^{2}+b x+c\), including the difference of two squares; factorising quadratic expressions of the form \(a x^{2}\) \(+b x+c\)``` | $\begin{gathered} \hline 160,161 \\ 162,163, \\ 164,165, \\ 166 \\ 168,169, \\ 171,173 \end{gathered}$ |


| Term | Unit | Ref | Topic | GCSE Objective statement | Hegarty |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2.4 | Algebraic fractions <br> SCHEME D \& E | Apply the four operations (,,$+- \times, \div$ ), including formal written methods, to simple fractions <br> Simplify and manipulate algebraic expressions involving algebraic fractions by: <br> - collecting like terms <br> - multiplying a single term over a bracket <br> - taking out common factors <br> - simplifying expressions involving sums, products and powers, including the laws of indices | $\begin{gathered} 170,172, \\ 229 \end{gathered}$ |
|  |  | 10.1 | Solving linear equations SCHEME C and D | Recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operations, including brackets, powers, and reciprocals. <br> Understand and use the concepts and vocabulary of expressions, equations, terms. <br> Simplify and manipulate algebraic expressions (including those involving algebraic fractions) by: <br> - collecting like terms <br> - multiplying a single term over a bracket <br> - simplifying expressions involving sums, products <br> - expanding products of two binomials <br> Understand and use standard mathematical formulae; rearrange formulae to change the subject. <br> Solve linear equations in one unknown algebraically including those with the unknown on both sides of the equation; find approximate solutions using a graph. <br> Translate simple situations or procedures into algebraic expressions or formulae; derive an equation, solve the equation and interpret the solution. | 178 to 188 |
|  | 3 Angles and polygons <br> (Geometry) | 3.1* | Angles and lines SCHEME C | Use conventional terms and notations: points, lines, parallel lines, perpendicular lines, right angles, <br> Apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive the sum of angles in a triangle and use of bearings. | $\begin{gathered} 477,478, \\ 812,813, \\ 814,815, \\ 479, \\ 480,481, \\ 482,483, \end{gathered}$ |
|  |  | 3.2* | Triangles and quadrilaterals SCHEME C | Derive and apply the properties and definitions of: special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language. <br> Apply angle facts, properties of quadrilaterals to conjecture and derive results about angles and use known results to obtain simple proofs. Solve geometrical problems on coordinate axes. | $\begin{gathered} 484,485, \\ 486,487, \\ 488,489, \\ 490,491, \\ 822 \end{gathered}$ |
|  |  | 3.3 | Congruence and similarity SCHEME D | use the standard conventions for labelling and referring to the sides and angles of triangles; <br> Use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS). <br> Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs. <br> Apply the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures. | $\begin{gathered} \hline 680,681, \\ 682, \end{gathered}$ |
|  |  | 3.4* | Polygon angles SCHEME C | Deduce and use the angle sum in any polygon, and to derive properties of regular polygons including exterior and interior angles | $\begin{gathered} 560,561, \\ 562, \end{gathered}$ |


| Term | Unit | Ref | Topic | GCSE Objective statement | Hegarty |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 Handling data 1 (Statistics) | 4.1* | Representing data SCHEME C | Infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling. <br> Interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pie charts, vertical line charts for ungrouped discrete numerical data, and know their appropriate use. <br> Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: <br> - appropriate graphical representation involving discrete data, | $\begin{aligned} & 394, \\ & 425, \end{aligned}$ |
|  |  | 4.2* | Averages and spread 1 SCHEME C | Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: <br> - appropriate measures of central tendency (median, mean, mode) and spread (range, including consideration of outliers, quartiles and inter-quartile range). <br> Apply statistics to describe a population. | $\begin{gathered} \hline 405,406, \\ 407,408 \\ 409 \\ 410,411, \\ 412, \end{gathered}$ |
|  |  | 4.3 | Frequency diagrams | Interpret and construct tables, charts and diagrams, including frequency tables, bar charts, and know their appropriate use. <br> Construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and unequal class intervals, and know their appropriate use. <br> Interpret, analyse the distributions of data sets from univariate empirical distributions through: <br> - appropriate graphical representation involving discrete, continuous and grouped data, modal class | $\begin{gathered} 414,415, \\ 416,417, \\ 418,419, \\ 420,421 \\ 442 \text { to } 449 \end{gathered}$ |
|  | 5 Fractions, decimals and percentages <br> (Number) | 5.1* | Fractions and percentages SCHEME C | Interpret fractions and percentages as operators. Define percentage as 'number of parts per hundred'; interpret percentages as a fraction or a decimal, and interpret these multiplicatively | $\begin{gathered} \hline 59,73,74, \\ 75,76, \end{gathered}$ |
|  |  | 5.2* | Calculations with fractions SCHEME B, C and D | Order fractions; use the symbols $=, \neq,<,>, \leq, \geq$. <br> Apply the four operations, including formal written methods, to simple fractions (proper and improper), and mixed numbers Recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operations, including brackets, and reciprocals. | $\begin{gathered} 63,64 \\ 66,67,68, \\ 69,70,71, \\ 72 \end{gathered}$ |
|  |  | 5.3 | Fractions, decimals and percentages <br> SCHEME E | Work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and $7 / 2$ or 0.375 or $3 / 8$ ). <br> Change recurring decimals into their corresponding fractions and vice versa. <br> Define percentage as 'number of parts per hundred'; interpret percentages as a fraction or a decimal; express one quantity as a percentage of another; compare two quantities using percentages; | 53, 54 |
|  | 6 Formulae and functions <br> (Algebra) | 6.1 | Formulae SCHEME C | Substitute numerical values into formulae and expressions, including scientific formulae. <br> Understand and use the concepts and vocabulary of expressions, equations, formulae, identities, terms and factors. <br> Understand and use standard mathematical formulae; rearrange formulae to change the subject. <br> Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in algebraic contexts. | $\begin{aligned} & 780 \text { to } 789 \\ & 280 \text { to } 286 \\ & 691 \text { to } 712 \end{aligned}$ |
|  |  | 6.2 | Functions SCHEME D | Recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operations, including brackets, powers, roots and reciprocals. <br> Where appropriate, interpret simple expressions as functions with inputs and outputs; <br> interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function'. | $\begin{aligned} & \hline 288,289, \\ & 293,294, \\ & 295,296 \end{aligned}$ |
|  |  | 6.3 | Equivalences in algebra | Know the difference between an equation and an identity; argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs. | 154 |


| Term | Unit | Ref | Topic | GCSE Objective statement | Hegarty |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 6.4 | Expanding and factorising 2 <br> SCHEME E | Simplify and manipulate algebraic expressions (including those involving algebraic fractions) by: <br> - collecting like terms <br> - taking out common factors <br> - simplifying expressions involving sums, products and powers, <br> - expanding products of two or more binomials <br> - factorising quadratic expressions of the form $x^{2}+b x+c$, including the difference of two squares; factorising quadratic expressions of the form $a x^{2}$ $+b x+c$ | $\begin{aligned} & 162 \text { to } 166 \\ & 223 \text { to } 228 \end{aligned}$ |



| Term | Unit | Ref | Topic | GCSE Objective statement |
| :---: | :---: | :---: | :--- | :--- | :--- |
|  |  | 9.3 | Measures and accuracy |  |
| SCHEME D |  |  |  |  |$\quad$| Use standard units of mass, length, time and other measures (including |
| :--- |
| standard compound measures) using decimal quantities where appropriate. |
| Round numbers and measures to an appropriate degree of accuracy (e.g. to |
| a specified number of decimal places or significant figures). |
| Use inequality notation to specify simple error intervals due to truncation or |
| rounding. |
| Apply and interpret limits of accuracy, including upper and lower bounds. |


| Term | Unit | Ref | Topic | GCSE Objective statement | Hegarty |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 Equations and inequalities <br> (Algebra) | 10.1 | Covered earlier in the year |  |  |
|  |  | 10.2 | SCHEME E | Simplify and manipulate algebraic expressions (including those involving surds and algebraic fractions) by: <br> - collecting like terms <br> - multiplying a single term over a bracket <br> - taking out common factors <br> - simplifying expressions involving sums, products and powers, <br> - expanding products of two binomials <br> - factorising quadratic expressions of the form $x^{2}+b x+c$, factorising quadratic expressions of the form $a x^{2}+b x+c$ <br> deduce roots algebraically; <br> Solve quadratic equations (including those that require rearrangement) algebraically by factorising; <br> by completing the square <br> and by using the quadratic formula; <br> find approximate solutions using a graph. | 230 to 242 |
|  |  | 10.3 | Simultaneous equations SCHEME E | Solve two simultaneous equations in two variables (linear/linear or linear/quadratic) algebraically; find approximate solutions using a graph. Translate simple situations or procedures into algebraic expressions or formulae; derive an equation (or two simultaneous equations), solve the equation(s) and interpret the solution. | $\begin{gathered} 190 \text { to } 195 \\ 218,219 \\ 246,259 \end{gathered}$ |
|  |  | 10.4 | Approximate solutions | Use positive integer powers and associated real roots (square, cube and higher) <br> Substitute numerical values into formulae and expressions Understand and use standard mathematical formulae; rearrange formulae to change the subject. <br> Find approximate solutions to equations numerically using iteration. | 321, 322, |
|  |  | 10.5 | Inequalities | Understand and use the concepts and vocabulary of expressions, equations,inequalities <br> Solve linear inequalities in one or two variable(s), and quadratic inequalities in one variable; represent the solution set on a number line, using set notation and on a graph. | 265 to 276 |
|  |  | 11.1 | Circles 1 <br> SCHEME C | Understand and use standard mathematical formulae; rearrange formulae to change the subject. <br> Identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference, tangent, arc, sector and segment. <br> Know the formulae: circumference of a circle $=2 \pi r=\pi d$, area of a circle $=$ $\pi r^{2}$; calculate perimeters of 2D shapes, including circles; areas of circles and composite shapes. | 534 to 543 |
|  | 11 Circles and | 11.2 | Circles 2 <br> SCHEME D \& E | Calculate arc lengths, angles and areas of sectors of circles. | 544 to 547 |
|  | constructions <br> (Geometry) | 11.4 | Constructions and loci SCHEME D | Use scale factors, scale diagrams and maps. <br> Use conventional terms and notations: points, lines, vertices, parallel lines, perpendicular lines, right angles, draw diagrams from written description. <br> Use the standard ruler and compass constructions: <br> perpendicular bisector of a line segment, <br> constructing a perpendicular to a given line from/at a given point <br> bisecting a given angle <br> use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line. <br> Measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings. | $\begin{aligned} & 659 \text { to } 669 \\ & 674 \text { to } 679 \end{aligned}$ |


| Term | Unit | Ref | Topic | GCSE Objective statement | Hegarty |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12 Ratio and proportion <br> (Ratio and proportion) | 12.1 | Proportion <br> SCHEME C | Express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1. <br> Define percentage as 'number of parts per hundred'; interpret percentages as a fraction or a decimal, and interpret these multiplicatively; express one quantity as a percentage of another; compare two quantities using percentages; work with percentages greater than 100\%; | $\begin{gathered} 84 \text { to } 87 \\ 97,98 \end{gathered}$ |
|  |  | 12.2 | Ratio and scales SCHEME C | Identify and work with fractions in ratio problems. <br> Use scale factors, scale diagrams and maps. <br> Use ratio notation, including reduction to simplest form. <br> Divide a given quantity into two parts in a given part:part or part:whole ratio; express the division of a quantity into two parts as a ratio; apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing, concentrations). <br> Express a multiplicative relationship between two quantities as a ratio <br> Understand and use proportion as equality of ratios. <br> Relate ratios to fractions <br> Compare lengths, using ratio notation; make links to scale factors. | 328 to 338 |
|  |  | 12.3 | Percentage change <br> SCHEME C \& D | Define percentage as 'number of parts per hundred'; interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively; express one quantity as a percentage of another; compare two quantities using percentages; work with percentages greater than 100\%; solve problems involving percentage change, including percentage increase/decrease and original value problems, and simple interest including in financial mathematics. | 96, 93 |


| Term | Unit | Ref | Topic | GCSE Objective statement | Hegarty |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 13 Factors, powers and roots <br> (Number) | 13.1* | Factors and multiples SCHEME B | Use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation theorem. <br> Apply systematic listing strategies Enumerate sets and combinations of sets systematically, using Venn diagrams | $\begin{aligned} & 27 \text { to } 32 \\ & 33 \text { to } 36 \end{aligned}$ |
|  |  | 13.2* | Powers and roots SCHEME D | Apply systematic listing strategies including use of the product rule for counting. <br> Use positive integer powers and associated real roots (square, cube and higher), recognise powers of $2,3,4,5$; estimate roots of any given positive number. <br> Calculate with roots, and with integer indices; | $\begin{array}{\|c\|} \hline 671 \text { to } 673 \\ 99 \text { to } 110 \end{array}$ |
|  |  | 13.3 | Surds | Calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{ } 12=\sqrt{ } 4 \times 3=\sqrt{ } 4 \times \sqrt{ } 3=2 \sqrt{ } 3$ ) <br> and rationalise denominators. | 111 to 119 |
|  | 14 Graphs 1 <br> (Algebra) | 14.1 | Equation of a straight line SCHEME C and E | Understand and use standard mathematical formulae; rearrange formulae to change the subject. <br> Work with coordinates in all four quadrants. use the form $y=m x+c$ to identify parallel lines; use the form $y=m x+c$ to identify perpendicular lines; find the equation of the line through two given points, or through one point with a given gradient. <br> Identify and interpret gradients and intercepts of linear functions graphically and algebraically. <br> Express a multiplicative relationship between two quantities as a ratio or a fraction. <br> Relate ratios to fractions and to linear functions. Interpret the gradient of a straight line graph as a rate of change; | $\begin{aligned} & 201 \text { to } 204 \\ & 206 \text { to } 216 \end{aligned}$ |
|  |  | 14.2 | Linear and quadratic functions SCHEME E | Plot graphs of equations that correspond to straight-line graphs in the coordinate plane; <br> Recognise, sketch graphs of linear functions and quadratic functions, find approximate solutions using a graph. | $\begin{array}{\|c\|} \hline 205,251 \text { to } \\ 257 \end{array}$ |
|  |  | 14.3 | Properties of quadratic functions SCHEME E | Identify and interpret roots, intercepts and turning points of quadratic functions graphically; deduce roots algebraically; deduce turning points by completing the square. <br> Recognise, sketch and interpret graphs of quadratic functions, Solve quadratic equations algebraically by factorising; by completing the square find approximate solutions using a graph. | $\begin{gathered} \hline 251-257, \\ 260 \end{gathered}$ |
|  |  | 14.4 | Kinematic graphs SCHEME C | Plot and interpret graphs ; graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration. | $\begin{aligned} & \hline 300-302 \\ & 874-879 \\ & 880-882 \\ & \hline \end{aligned}$ |
|  | 15 Working in 3D <br> (Geometry) | 15.1* | 3D shapes <br> Scheme B | Use conventional terms and notations: vertices, edges, draw diagrams from written description. <br> Identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones and spheres. <br> Construct and interpret plans and elevations of 3D shapes. | 829-844 |
|  |  | 15.2 | Volume of a prism SCHEME D \& E | Use compound units such as density Compare lengths, areas and volumes make links to scale factors. Use standard units of measure and related concepts (length, area, volume/capacity, mass, time, etc.) Know and apply formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders). Know the formulae: circumference of a circle $=2 \pi r=\pi d$, area of a circle $=$ $\pi r^{2}$; calculate areas of circles and composite shapes. | 570-575 |
|  |  | 15.3 | Volume and surface area <br> Scheme E | Surface area and volume of spheres, pyramids, cones and composite solids. <br> Apply the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures. | $\begin{aligned} & \hline 576-583 \\ & 584-591 \end{aligned}$ |



| Term | Unit | Ref | Topic | GCSE Objective statement | Hegarty |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 21.1 | Linear sequences SCHEME D | Generate terms of a sequence from either a term-to-term or a position-toterm rule. <br> Recognise and use, simple arithmetic progressions, Deduce expressions to calculate the nth term of linear sequences | 196 to 198 |
|  | 21 Sequences <br> (Algebra) | 21.2 | Quadratic sequences | Generate terms of a sequence from either a term-to-term or a position-toterm rule. <br> Recognise and use quadratic sequences and other sequences. <br> Deduce expressions to calculate the nth term of linear sequences and quadratic sequences. | 247 to 250 |
|  |  | 21.3 | Special sequences | Generate terms of a sequence from either a term-to-term or a position-toterm rule. <br> Recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric progressions ( $\mathrm{r}^{\mathrm{n}}$ where n is an integer, and $r$ is a rational number $>0$ or a surd) and other sequences. | 263, 261, |
|  |  | 16.1 | Averages and spread 2 | Interpret and construct tables, charts including frequency tables, and know their appropriate use. <br> Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: <br> - appropriate measures of central tendency (median, mean, mode and modal class) and spread (range). <br> Apply statistics to describe a population. | 414 to 418 |
|  | 16 Handling data 2 (Statistics) | 16.2 | Box plots and cumulative frequency graphs | Construct and interpret diagrams for grouped discrete data and continuous data, i.e.cumulative frequency graphs, and know their appropriate use. Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: <br> - appropriate graphical representation involving discrete, continuous and grouped data, including box plots. <br> - appropriate measures of central tendency (median) and spread (range, quartiles and inter-quartile range). | 434 to 440 |
|  |  | 16.3 | Scatter graphs and correlation SCHEME D | Use and interpret scatter graphs of bivariate data; recognise correlation and know that it does not indicate causation; draw estimated lines of best fit; make predictions; interpolate and extrapolate apparent trends whilst knowing the dangers of so doing. | 452 to 453 |
|  |  | 16.4 | Time series | Interpret and construct tables, charts and diagrams, including, tables and line graphs for time series data and know their appropriate use. | 450 |
|  |  | 18.1 | Cubic and reciprocal functions | Recognise, sketch and interpret graphs of linear functions and quadratic functions, simple cubic functions and the reciprocal function $y=1 / x$ with $x \neq$ 0, |  |
|  |  | 18.2 | Exponential and trigonometric functions | Recognise, sketch and interpret graphs of, exponential functions $y=k^{\times}$for positive values of $k$, and the trigonometric functions (with arguments in degrees) $y=\sin x, y=\cos x$ and $y=\tan x$ for angles of any size. Sketch translations and reflections of a given function. | $\begin{gathered} 302,303, \\ 304,305 \\ 306 \\ 307 \text { to } 313 \end{gathered}$ |
|  | 18 Graphs 2 <br> (Algebra) | 18.3 | Real-life graphs | Plot and interpret graphs (including reciprocal graphs and exponential graphs) in real contexts and graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration. <br> Interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct and inverse proportion. | 894 to 902 |
|  |  | 18.4 | Gradients and areas under graphs | Calculate or estimate gradients of graphs (including quadratic and other nonlinear graphs) and areas under graphs (including quadratic and other nonlinear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts. | 891 to 893 |
|  |  | 18.5 | Equation of a circle | Recognise and use the equation of a circle with centre at the origin; find the equation of a tangent to a circle at a given point. | 315 to 317 |
|  | 11 Circle Theorems | 11.3 | Circle theorems | Apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results. | $\begin{aligned} & 594 \text { to } 606 \\ & 816 \text { to } 820 \end{aligned}$ |

