Term	Unit	Ref	Topic	GCSE Objective statement	Hegarty
	1 Calculations 1 (Number)	1.1	Place value	Order positive and negative integers, decimals and fractions; use the symbols $=, \neq,<,>, \leq, \geq$. Apply the four operations,,$+- \times, \div$, including formal written methods, to integers, decimals and simple fractions (proper and improper), and mixed numbers - all both positive and negative; understand and use place value (e.g. when working with very large or very small numbers, and when calculating with decimals). Apply systematic listing strategies.	46
		1.2	Rounding	Round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal places or significant figures)	$\begin{aligned} & \hline 56,130, \\ & 131,132 \\ & \hline \end{aligned}$
		1.3	Adding and subtracting	Apply the operations +, - including formal written methods, to integers, decimals - both positive and negative; understand and use place value (e.g. when calculating with decimals).	47
		1.4	Multiplying and dividing	Apply the operations \times, \div, including formal written methods, to integers, decimals - both positive and negative; understand and use place value (e.g. when working with very large or very small numbers, and when calculating with decimals). Use conventional notation for priority of operations, including brackets, powers, roots (BIDMAS)	143, 22
	2 Expressions (Algebra)	2.1	Terms and expressions	Use and interpret algebraic notation, including: - $a b$ in place of $a \times b$ - $3 y$ in place of $y+y+y$ and $3 x y$ $-a^{2}$ in place of $a \times a, a^{3}$ in place of $a \times a \times a, a^{2} b$ in place of $a \times a \times b$ - a / b in place of $a \div b$ - coefficients written as fractions rather than as decimals - brackets Substitute numerical values into formulae and expressions, Understand and use the concepts and vocabulary of expressions, equations, formulae, terms	780, 781
		2.2	Simplifying expressions	Simplify and manipulate algebraic expressions by: - collecting like terms - simplifying expressions involving sums, products and powers,	156, 157
		2.3	Indices	Simplify and manipulate algebraic expressions by: - simplifying expressions involving sums, products and powers, including the laws of indices.	$\begin{aligned} & 102,103, \\ & 104,105, \\ & 106,107, \end{aligned}$
		2.4	Expanding and factorising 1	Understand and use the concepts and vocabulary of expressions, terms and factors. Simplify and manipulate algebraic expressions by: - multiplying a single term over a bracket - taking out common factors - simplifying expressions involving sums, products and powers,	$\begin{gathered} 160,161 \\ 162,163 \\ 164,165 \\ 166 \\ 168,169 \end{gathered}$
		3.1	Angles and lines	Use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries; use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description. Apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons). Measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings.	$\begin{aligned} & 484,485, \\ & 486,487, \\ & 488,489, \\ & 490,491, \end{aligned}$

Term	Unit	Ref	Topic	GCSE Objective statement	Hegarty
	(Geometry)	3.2	Triangles and quadrilaterals	Derive and apply the properties and definitions of: special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus;and triangles and other plane figures using appropriate language. Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, and the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs. Solve geometrical problems on coordinate axes.	822
		3.3	Congruence and similarity	Use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS). Apply the concepts of congruence and similarity, including the relationships between lengths in similar figures.	$\begin{gathered} \hline 680,681, \\ 682, \end{gathered}$
		3.4	Polygon angles	Deduce and use the angle sum in any polygon, and to derive properties of regular polygons including exterior and interior angles	$\begin{gathered} 560,561, \\ 562, \end{gathered}$
	4 Handling data 1 (Statistics)	4.1	Organising data	Infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling. Interpret and construct tables, charts and diagrams, including frequency tables, bar charts,and pictograms for categorical data, and know their appropriate use. Apply statistics to describe a population.	$\begin{gathered} 426,394 \\ 425 \end{gathered}$
		4.2	Representing data 1	Interpret and construct tables, charts and diagrams, including vertical line charts for ungrouped discrete numerical data, and know their appropriate use. Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: - appropriate graphical representation involving discrete data	401, 402
		4.3	Representing data 2	Interpret and construct tables, charts and diagrams, including frequency tables, pie charts and know their appropriate use. Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: - appropriate graphical representation involving discrete data	427, 428
		4.4	Averages and spread 1	Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: - appropriate graphical representation involving discrete data - appropriate measures of central tendency (median, mean, mode) and spread (range, including consideration of outliers). Apply statistics to describe a population.	$\begin{gathered} 405,406, \\ 407,408 \\ 409, \\ 410,411, \\ 412, \end{gathered}$

Term	Unit	Ref	Topic	GCSE Objective statement	Hegarty
	5 Fractions, decimals and percentages (Number)	5.1	Decimals and fractions	Order positive , decimals and fractions; use the symbols $=, \neq,<,>, \leq, \geq$. Work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and $7 / 2$ or 0.375 or $3 / 8$). Express one quantity as a fraction of another, where the fraction is less than 1	$\begin{array}{\|c\|} \hline 59,73,74, \\ 75,76, \\ \\ 46,60 \end{array}$
		5.2	Fractions and percentages	Recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); Interpret fractions and percentages as operators.	77, 84, 87
		5.3	Calculations with fractions	Apply the four operations,,$+- \times, \div$, including formal written methods, to simple fractions (proper and improper), and mixed numbers Recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); and reciprocals.	63,64 $66,67,68$, $69,70,71$, 72
		5.4	Fractions, decimals and percentages	Work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and $7 / 2$ or 0.375 or $3 / 8$). Define percentage as 'number of parts per hundred'; interpret percentages as a fraction or a decimal, compare two quantities using percentages; work with percentages greater than 100%;	53, 54
	6 Formulae and functions (Algebra)	6.1	Substituting into formulae	Substitute numerical values into formulae and expressions, including scientific formulae. Understand and use standard mathematical formulae	780 to 782
		6.2	Using standard formulae	Understand and use standard mathematical formulae; rearrange formulae to change the subject. Where appropriate, interpret simple expressions as functions with inputs and outputs.	280
		6.3	Equations, identities and functions	Understand and use the concepts and vocabulary of expressions, equations, formulae, identities, inequalities, terms Know the difference between an equation and an identity; argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments.	154
		6.4	Expanding and factorising 2	Simplify and manipulate algebraic expression by: - collecting like terms - expanding products of two binomials - factorising quadratic expressions of the form $x^{2}+b x+c$, including the difference of two squares.	$\begin{array}{\|c\|} \hline 161 \text { to } 165 \\ 223 \end{array}$
	7 Working in 2D (Geometry)	7.1	Measuring lengths and angles	Use scale diagrams and maps. Draw diagrams from written description. Use standard units of measure and related concepts (length). Measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings.	$\begin{array}{\|l\|} \hline 864 \text { to } 868 \\ 492 \text { to } 496 \end{array}$
		7.2	Area of a 2D shape	Understand and use standard mathematical formulae; rearrange formulae to change the subject if necessary Use standard units of measure and related concepts (length, area). Know and apply formulae to calculate: area of triangles, parallelograms, trapezia;	$\begin{gathered} 555,556, \\ 557,558, \\ 559 \end{gathered}$
		7.3	Transformations 1	Identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation Describe translations as 2D vectors.	637 to 649
		7.4	Transformations 2	Identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering enlargement (including fractional scale factors).	650 to 654

| Term | Unit | Ref | Topic | GCSE Objective statement |
| :---: | :---: | :---: | :--- | :--- | :--- |
| | | 15.1 | 3D shapes | |

Term	Unit	Ref	Topic	GCSE Objective statement	Hegarty
5	16 Handling data 2 (Statistics)	16.1	Frequency diagrams	Interpret, analyse the distributions of data sets from univariate empirical distributions through: - appropriate graphical representation involving grouped discrete and grouped continuous data (equal group widths)	401, 425
		16.2	Averages and spread 2	Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: - appropriate measures of central tendency (median, mean, and modal class) and spread (range) using grouped data	414 to 418
		16.3	Scatter graphs and correlation	Use and interpret scatter graphs of bivariate data; recognise correlation and know that it does not indicate causation; draw estimated lines of best fit; make predictions; interpolate and extrapolate apparent trends whilst knowing the dangers of so doing.	452 to 453
		16.4	Time series	Interpret and construct tables, charts and diagrams, including tables and line graphs for time series data and know their appropriate use.	450
	17 Calculations 2 (Number)	17.1	Calculating with roots and indices	Use positive integer powers and associated real roots (square, cube and higher), recognise powers of $2,3,4,5$. Calculate with roots, and with integer indices.	$\begin{gathered} \hline 104,108, \\ 109 \end{gathered}$
		17.2	Exact calculations	Calculate exactly with fractions; calculate exactly with multiples of π.	542
		17.3	Standard form	Apply the four operations,,$+- \times, \div$, to calculations using standard form numbers. Convert numbers into and out of standard form. Calculate with and interpret standard form $A \times 10^{n}$, where $1 \leq A<10$ and n is an integer.	121 to 128
	18 Graphs 2 (Algebra)	18.1	Properties of quadratic functions	Identify and interpret roots, intercepts and turning points of quadratic functions graphically; deduce roots algebraically. sketch and interpret graphs of quadratic functions, find approximate solutions using a graph.	251, 252
		18.2	Sketching functions	Recognise, sketch and interpret graphs of linear functions and quadratic functions, simple cubic functions and the reciprocal function $y=1 / x$ with $x \neq 0$.	
		18.3	Real-life graphs	Plot and interpret graphs (including reciprocal graphs) and graphs of nonstandard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration.	894 to 902
	19 Pythagoras and trigonometry (Geometry)	19.1	Pythagoras' theorem	Apply Pythagoras' Theorem to obtain simple proofs. Know the formulae for: Pythagoras' theorem, $a^{2}+b^{2}=c^{2}$; apply them to find lengths in right-angled triangles in two dimensional figures.	497 to 507
		19.2	Trigonometry 1	Compare lengths; make links to similarity (including trigonometric ratios) Apply the concepts of congruence and similarity, including the relationships between lengths in similar figures. Know the formulae for the trigonometric ratios, $\sin \theta=$ opposite/hypotenuse, $\cos \theta=$ adjacent/hypotenuse and $\tan \theta=$ opposite/adjacent; apply them to find lengths in right-angled triangles in two dimensional figures. Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°; know the exact value of $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°.	508 to 515
		19.3	Trigonometry 2	Apply trigonometry to find angles and lengths in right-angled triangles in two dimensional figures.	
		19.4	Vectors	Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors.	650 623 to 629

Term	Unit	Ref	Topic	GCSE Objective statement	Hegarty
	20 The probability of combined events (Probability)	20.1	Sets	Enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams and tree diagrams. Construct theoretical possibility spaces for single and combined experiments with equally likely outcomes and use these to calculate theoretical probabilities.	$\begin{aligned} & 370 \text { to } 380 \\ & 358 \text { to } 359 \end{aligned}$
		20.2	Possibility spaces	Apply systematic listing strategies.	
		20.3	Tree diagrams	Record, describe and analyse the frequency of outcomes of probability experiments using frequency trees. Enumerate sets and combinations of sets systematically, using tree diagrams. Calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions.	368, 369
$$	21 Sequences	21.1	Linear sequences	Generate terms of a sequence from either a term-to-term or a position-toterm rule. Recognise and use simple arithmetic progressions, Deduce expressions to calculate the nth term of linear sequences	196 to 198
		21.3	Special sequences	Recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric progressions (r^{n} where n is an integer, and r is a rational number >0).	263, 261,
	22 Units and proportionality (Ratio and proportion)	22.1	Compound units	Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices) in numerical contexts. Use compound units such as speed, rates of pay, unit pricing density and pressure.	715 to 738
		22.2	Direct proportion	Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices) in algebraic contexts. Express a multiplicative relationship between two quantities as a ratio or a fraction. Understand and use proportion as equality of ratios. Relate ratios to linear functions. Solve problems involving direct proportion, including graphical and algebraic representations. interpret equations that describe direct proportion. Interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct proportion.	339 to 341
		22.3	Inverse proportion	Solve problems involving direct and inverse proportion, including graphical and algebraic representations. Understand that X is inversely proportional to Y is equivalent to X is proportional to $1 / Y$; interpret equations that describe direct and inverse proportion. recognise and interpret graphs that illustrate inverse proportion.	342
		22.4	Growth and decay	recognise and interpret graphs that illustrate direct and inverse proportion. Set up, solve and interpret the answers in growth and decay problems, including compound interest.	94, 95

